Quasi-degenerate perturbation theory (QDPT)方法,只对单个Karmer双重态(奇数个电子)有效
输出
Effective Hamiltonian Method得到的结果:
输出显示总 g 矩阵,后跟三个主成分及其方向(特征向量eigenvectors)。特征向量是列向量
此例子中$gz=2.99,g{x,y}=2.24$
对于重元素,使用相对论效应和SOC时,需要增加%rel模块
1 2 3 4 5 6 7 8 9 10 11 12
%rel picturechange 2# second order DKH SOC fpFWtrafo false# recommended option for g-tensor end %casscf ... rel dosoc true#spin-orbit coupling (and ZFS) gtensor true end ... end
D-tensor
CASSCF
1 2 3 4 5 6 7 8
%casscf ... rel dosoc true #spin-orbit coupling (and ZFS) dtensor true end ... end
有两种方法计算,the 2nd Order PT approach(二阶 PT 方法)和Effective Hamiltonian Method
soc dosoctrue domagnetizationtrue# Calculate magnetization (def: false) dosusceptibilitytrue# Calculate susceptiblity (def: false) LebedevPrec5# Precision of the grid for different field # directions (meaningful values range from 1 # (smallest) to 10 (largest)) nPointsFStep5# number of steps for numerical differentiation # (def: 5, meaningful values are 3, 5 7 and 9) MAGFieldStep100.0# Size of field step for numerical differentiation # (def: 100 Gauss) MAGTemperatureMIN4.0# minimum temperature (K) for magnetization MAGTemperatureMAX4.0# maximum temperature (K) for magnetization MAGTemperatureNPoints1# number of temperature points for magnetization MAGFieldMIN0.0# minimum field (Gauss) for magnetization MAGFieldMAX70000.0# maximum field (Gauss) for magnetization MAGNpoints15# number of field points for magnetization SUSTempMIN1.0# minimum temperature (K) for susceptibility SUSTempMAX300.0# maximum temperature (K) for susceptibility SUSNPoints300# number of temperature points for susceptibility SUSStatFieldMIN0.0# minimum static field (Gauss) for susceptibility SUSStatFieldMAX0.0# maximum static field (Gauss) for susceptibility SUSStatFieldNPoints1# number of static fields for susceptibility end